Morphic and Automatic Words: Maximal Blocks and Diophantine Approximation
نویسندگان
چکیده
Let w be a morphic word over a finite alphabet Σ, and let ∆ be a nonempty subset of Σ. We study the behavior of maximal blocks consisting only of letters from ∆ in w, and prove the following: let (ik, jk) denote the starting and ending positions, respectively, of the k’th maximal ∆-block in w. Then lim supk→∞(jk/ik) is algebraic if w is morphic, and rational if w is automatic. As a result, we show that the same conclusion holds if (ik, jk) are the starting and ending positions of the k’th maximal zero block, and, more generally, of the k’th maximal xblock, where x is an arbitrary word. This enables us to draw conclusions about the irrationality exponent of automatic and morphic numbers. In particular, we show that the irrationality exponent of automatic (resp., morphic) numbers belonging to a certain class that we define is rational (resp., algebraic).
منابع مشابه
Maximal Blocks in Morphic and Automatic Words
Let w be a morphic word over a finite alphabet Σ, and let ∆ be a subalphabet. We study the behavior of maximal blocks of ∆ letters in w, and prove the following: let (ik, jk) denote the starting and ending positions, respectively, of the k’th maximal ∆-block in w. Then lim supk→∞(jk/ik) is algebraic if w is morphic, and rational if w is automatic. As a results, we show that the same holds if (i...
متن کاملA Hierarchy of Automatic Words having a Decidable MSO Theory
We investigate automatic presentations of infinite words. Starting points of our study are the works of Rigo and Maes, and Carton and Thomas concerning the lexicographic presentation, respectively the decidability of the MSO theory of morphic words. Refining their techniques we observe that the lexicographic presentation of a (morphic) word is canonical in a certain sense. We then go on to gene...
متن کاملOn Uniformly Recurrent Morphic Sequences
In the paper we mainly deal with two well-known types of in nite words: morphic and uniformly recurrent (=almost periodic). We discuss the problem of nding criterion of uniform recurrence for morphic sequences and give e ective polynomial-time such criterion in two particular cases: pure morphic sequences and automatic sequences. We also prove that factor complexity of arbitrary uniformly recur...
متن کامل2 2 N ov 1 99 9 CANONICAL HEIGHTS AND ENTROPY IN ARITHMETIC DYNAMICS
The height of an algebraic number in the sense of Diophantine geometry is known to be related to the entropy of an automorphism of a solenoid associated to the number. An el-liptic analogue is considered, which necessitates introducing a notion of entropy for sequences of transformations. A sequence of transformations are defined for which there is a canonical arithmetically defined quotient wh...
متن کاملMorphic Heights and Periodic Points
An approach to the calculation of local canonical morphic heights is described, motivated by the analogy between the classical height in Diophantine geometry and entropy in algebraic dynamics. We consider cases where the local morphic height is expressed as an integral average of the logarithmic distance to the closure of the periodic points of the underlying morphism. The results may be though...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0808.2544 شماره
صفحات -
تاریخ انتشار 2008