Morphic and Automatic Words: Maximal Blocks and Diophantine Approximation

نویسندگان

  • Yann Bugeaud
  • Dalia Krieger
  • Jeffrey Shallit
چکیده

Let w be a morphic word over a finite alphabet Σ, and let ∆ be a nonempty subset of Σ. We study the behavior of maximal blocks consisting only of letters from ∆ in w, and prove the following: let (ik, jk) denote the starting and ending positions, respectively, of the k’th maximal ∆-block in w. Then lim supk→∞(jk/ik) is algebraic if w is morphic, and rational if w is automatic. As a result, we show that the same conclusion holds if (ik, jk) are the starting and ending positions of the k’th maximal zero block, and, more generally, of the k’th maximal xblock, where x is an arbitrary word. This enables us to draw conclusions about the irrationality exponent of automatic and morphic numbers. In particular, we show that the irrationality exponent of automatic (resp., morphic) numbers belonging to a certain class that we define is rational (resp., algebraic).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal Blocks in Morphic and Automatic Words

Let w be a morphic word over a finite alphabet Σ, and let ∆ be a subalphabet. We study the behavior of maximal blocks of ∆ letters in w, and prove the following: let (ik, jk) denote the starting and ending positions, respectively, of the k’th maximal ∆-block in w. Then lim supk→∞(jk/ik) is algebraic if w is morphic, and rational if w is automatic. As a results, we show that the same holds if (i...

متن کامل

A Hierarchy of Automatic Words having a Decidable MSO Theory

We investigate automatic presentations of infinite words. Starting points of our study are the works of Rigo and Maes, and Carton and Thomas concerning the lexicographic presentation, respectively the decidability of the MSO theory of morphic words. Refining their techniques we observe that the lexicographic presentation of a (morphic) word is canonical in a certain sense. We then go on to gene...

متن کامل

On Uniformly Recurrent Morphic Sequences

In the paper we mainly deal with two well-known types of in nite words: morphic and uniformly recurrent (=almost periodic). We discuss the problem of nding criterion of uniform recurrence for morphic sequences and give e ective polynomial-time such criterion in two particular cases: pure morphic sequences and automatic sequences. We also prove that factor complexity of arbitrary uniformly recur...

متن کامل

2 2 N ov 1 99 9 CANONICAL HEIGHTS AND ENTROPY IN ARITHMETIC DYNAMICS

The height of an algebraic number in the sense of Diophantine geometry is known to be related to the entropy of an automorphism of a solenoid associated to the number. An el-liptic analogue is considered, which necessitates introducing a notion of entropy for sequences of transformations. A sequence of transformations are defined for which there is a canonical arithmetically defined quotient wh...

متن کامل

Morphic Heights and Periodic Points

An approach to the calculation of local canonical morphic heights is described, motivated by the analogy between the classical height in Diophantine geometry and entropy in algebraic dynamics. We consider cases where the local morphic height is expressed as an integral average of the logarithmic distance to the closure of the periodic points of the underlying morphism. The results may be though...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0808.2544  شماره 

صفحات  -

تاریخ انتشار 2008